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Abstract

Deep brain stimulation (DBS) is an important effective treatment for pharmacoresistant 
epilepsy, but its mechanism is still not clear. In clinical application, the possible effects and 
mechanisms DBS in treatment of epilepsy are different according to different stimulation 
parameters. We reviewed the mechanisms of DBS in different frequencies including high 
frequency and low frequency in the treatment of epilepsy, covering the inhibition or excitation 
of synaptic, pathological neuronal and network activity, pathological rhythms or oscillation 
and neurotransmitter systems. As the onset and progression of seizure, it’s more frequent 
accompanied with cognitive and psychiatric comorbidities in patients with epilepsy. We 
review the possible mechanism of DBS in treating epilepsy associated comorbidities including 
cognitive and memory disorders. With the further development of clinical application and 
basic research of DBS, the processing of clinical individualized therapy of DBS in epilepsy 
and evaluation of effects of DBS in associated comorbidities may contribute to extend the 
understanding of the mechanisms of DBS for epilepsy and associated comorbidities.
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Introduction

Epilepsy is a common neurological disorder 
characterized by repeated spontaneous 
neurological or behavioral changes, often 
associated with cognitive impairment, 
psychiatric symptoms, and social function deficit. 
Worldwide prevalence of epilepsy is estimated 
by approximately 1% in the population [1-4]. 
In fact, more than 30 percent of patients with 
epilepsy are still unable to get adequate control 
of their seizures although with medicine therapy 
[5,6]. And surgical methods are only suitable for 

epilepsy patients with focal lesions clear, if the 
lesion is not clear or bilateral cerebral hemisphere 
involvement, as well as patients with higher risk 
of cognitive impairment, surgical methods can’t 
be conducted. Therefore, electrical stimulation is 
very important means to suppress seizures.

In fact, the use of brain electrical stimulation is 
not a new treatment method, but it has gained 
much attention in the recent more than 20 years 
[7]. One of the most commonly used method 
is the deep brain stimulation (DBS), namely 
through stimulating electrode implanted and 
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onset of 54% patients was reduced by 50%. 14 
patients were seizure free for at least 6 months. 
Another including 191 subjects randomized 
multicenter double-blinded controlled trial 
of responsive focal cortical stimulation (RNS 
System) [36,37]. They reported a progressive 
and significant improvement with time as the 
median percent reduction in seizures was 44% at 
1 year and 53% at 2 years. These clinical studies, 
most patients can tolerate DBS stimulation, and 
with no side effects of related exercise and low or 
no adverse effects neuropsychological function 
or mood. 

�� The mechanism of DBS for epilepsy

Although the clinical use of DBS has emerged 
for several decades, understanding of the 
mechanisms for the therapeutic action of 
DBS remains poorly defined. The therapeutic 
mechanism(s) of DBS may complicate. The 
authors reported it may involve inhibition or 
excitation of synaptic, pathological neuronal 
and network activity, pathological rhythms 
or oscillation and neurotransmitter systems 
[38-42].

However, the optimal “antiepileptic parameters” 
including frequency, duration, and mode of 
delivery (pulses vs continuous stimulation) of 
DBS for reducing the frequency of seizures are 
much variable among patients. Moreover, the 
suitable stimulation parameters in a patient-
specific manner could lead to indispensable 
for antiepileptic effects. In fact, interpretation 
of laboratory and clinical data is challenging 
because of a lot of stimulation protocols used, 
as the different stimulation frequencies and 
target locations. The frequencies of stimulation 
display different strategies to intervene with 
epileptiform. We will review the mechanisms 
based on the frequencies. A wide range of 
stimulation frequencies have been used between 
0.1 and 400 Hz. Studies have shown that high 
frequency stimulation (HFS; usually >70 Hz) 
and low frequency stimulation (LFS; usually 
<12 Hz) are beneficial for suppressing epileptic 
seizures. While intermediate frequencies (IFS, 
around 50 Hz) trigger epileptic afterdischarges, 
favor thalamic oscillations and entrain epileptic 
dynamics, and was actually used as damage 
method in the kindling model of epilepsy [43-
48], not involved in this review.

�� Mechanism of high frequency DBS

Applied a high-frequency stimulation produces 
a direct and indirect influence on the cell 

connected with subcutaneous pulse generator 
to implement the electrical stimulation, and 
activation of specific brain areas and control the 
related brain network to achieve the therapeutic 
effect [8,9].

DBS was first used in the treatment of motor 
disorders, such as Parkinson’s disease (PD), 
tremor and dystonia. The good effect of DBS 
in treatment of motor system diseases leads 
to widely extended study of the basal ganglia 
circuits [10-14]. At the same time, it makes 
people to expand its scope to the treatment of 
other neurological diseases such as epilepsy and 
mental diseases such as depression, which makes 
a deeper understanding of the neurobiological 
mechanisms and brain networks of the nervous 
system diseases [15-19]. What’s more, DBS 
is a kind of controllable treatment, which has 
obvious individuation and reversibility. These 
features make DBS significantly superior to 
surgical resection. Moreover, in the past more 
than 20 years, DBS has been shown to be safer 
and with less complications and mortality.

�� Applications of DBS for epilepsy

Early scientific evidences have shown potentially 
beneficial effects of DBS on epileptiform activity 
in cat models [20-22]. And then electrical 
stimulation in patients has also been examined 
in a number of relatively small human trials 
targeted in the cerebellum [23-25]. Along with 
the development of research about DBS, the 
targets of DBS are more diverse and abundant. In 
addition to the cerebellum, effective sites include 
hippocampus, subthalamus, hypothalamus, 
anterior thalamus; caudate, brainstem and 
seizure focus [26-28].

Among them, the anterior thalamic nucleus 
(ANT) is the most widely used stimulation 
targets. Because of the physiological replacing 
role of electrodes, ANT-DBS has better 
therapeutic effect than ANT damage [29-31]. 
ANT DBS has considerable protection effect 
in 1985 first reported by Cooper and Upton 
[32]. They reported a seizure reduction in the 
frequency of 4 in 6 patients. Furthermore, 
many clinical researches including multicenter, 
double-blind, randomized bilateral SANTE 
experiment of ANT-DBS in epilepsy also verify 
the effectiveness [33-35]. 

They reported in 110 patient’s 40.4% seizure 
decline in treatment group compared with 
14.5% in the control group. After 2 years it is 
56% median reduction in seizure frequency, and 
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bodies, dendrites or axons. HFS could produce 
a transient blockade of intrinsic voltage-gated 
currents in subthalamic nucleus, indicating 
single-spike and bursting modes of discharge 
for interrupting ongoing activities of STN 
neurons [49]. These effects closely related to 
the synaptic transmission, underlying HFS may 
induce the synaptic plasticity [50]. Moreover 
in rat hippocampal brain slices, depressed 
excitatory postsynaptic potentials by HFS 
maybe on account of the decreased presynaptic 
axon excitability at synapses between CA1 
pyramidal neurons and Schaffer collaterals [51]. 
Synaptic depression induced by HFS may be 
due to neurotransmitter depletion, reported as 
decreasing in concentrations of excitatory amino 
acids such as glutamate and aspartate, while the 
enhancing of inhibitory synaptic transmission by 
HFS such as γ-aminobutyric acid releasing from 
afferent fibers and thereby [52,53]. Similarly, 
it’s been reported local HFS inhibits neurons of 
human subthalamic nucleus, which may inhibit 
intrinsic synaptically mediated responses as 
neuronal firing [54].

Modulation of the network is proposed based 
on the concept that disease treated with DBS 
are fundamentally disease of a specific brain 
network, rather than a specific neuron type, 
ion channel, or molecule [55]. In order to 
establish a framework related to network effects 
of DBS, measurements involved in cerebral 
blood flow and metabolic imaging, functional 
imaging, and electrophysiology (including scalp 
and intracranial electroencephalography and 
magnetoencephalography). Thalamocortical 
network is an important structure in epilepsy 
treat with DBS. In fact, HFS given to any 
location within the thalamocortical network is 
likely to affect the whole network. When adding 
glutamate release and glutamate-dependent 
activation of Ih, HFS may abolish thalamic 
network oscillations [56]. Further, HFS 
conducts the disruption of the thalamocortical 
network’s dysrhythmia by an initial excitatory 
mechanism and subsequently develops inhibitory 
processes depending on neurotransmitter 
release. Regarding this, HFS maybe neither only 
inhibitory nor excitatory, but rather perform the 
disruption of network oscillations and rhythmic 
activity [56-58]. In addition to neurons in the 
network, astrocytic activity has been effected by 
HFS, which implicating an important role of 
astroglia in this modality [59,60]. As astrocytes 
could be directly depolarized by HFS [61], 
regulate the inhibitory synapses in activity-

dependent modulation and have the potential to 
modulate distant/local neural networks through 
the release of adenosine and gliotransmitters 
including glutamate and ATP [62,63]. In the 
brain, adenosine is regarded as endogenous 
anticonvulsant and seizure terminator [64-66]. 
Furthermore, the upregulation of adenosine and 
its kinase during the astrogliosis as a crucial link 
between astrocyte and neuron dysfunction may 
provide a pivotal role in the abnormal network of 
neuron and glia in epilepsy [67-69]. Considering 
of possible action of adenosine in prediction 
and prevention of epileptogenesis [70], it will 
be an alternative target in mechanism of DBS in 
treatment of epilepsy.

�� Mechanism of low frequency DBS

From 1980’s, electrical low-frequency stimulation 
(LFS) has been reported effectively treating 
kindled seizures [71]. With animal models and 
clinical applications, it has shown LFS could 
inhibit seizure activities and reduce frequency of 
seizures [72-75]. Although numerous researches 
have displayed the potential therapeutic effect 
of LFS on epileptic seizures, the underlying 
mechanisms are still unknown.

LFS induced long-lasting hyperpolarization 
underlies seizure reduction [76]. And it could 
decrease the discharges of interictal spiking [72]. 
LFS showed blockade of in vitro ictogenesis 
coincides with increased epileptiform response 
frequency-dependent increase latency in rodent 
brain slices, which may contribute to decrease 
epileptiform synchronization [77]. In bilateral 
hippocampal slice, LFS decreased 4-AP–induced 
epileptiform activity [76]. Some studies described 
LFS induces a transient synaptic depression that 
alters synaptic transmission [45]. Further, LFS 
in the GPe exerts therapeutic effect on seizures 
due to interference with delta rhythms [78]. LFS 
could modulate cortical oscillations with state-
dependent [79].

In hippocampal CA1 pyramidal cells of kindled 
rats, LFS application may have effects on 
spontaneous inhibitory and excitatory post-
synaptic currents preventing seizure-induced 
raise in the occurrence of sEPSCs and seizure-
induced decrease in occurrence and activity 
duration of sIPSCs [80]. Moreover, LFS could 
enhance the effectiveness of phenobarbital on 
GABAergic currents, implicating a positive 
interaction between phenobarbital and LFS 
through GABAA currents, which indicated a 
well effective combined therapy [81]. LFS either 
immediately or in close interval rapid kindling 
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stimulation may inhibit the kindling-induced 
epileptogenesis [82]. It indicates LFS as an 
efficient technique can be used in closed loop 
seizure system to predict and prevent epileptic 
discharges.

Mechanism of DBS for epilepsy and associated 
comorbidities

Epilepsy patients common happen with other 
diseases, including nervous system disease, 
mental illness and physical diseases. The 
incidences of migraine, tic disorder, autism, 
attention-deficit/ hyperactivity disorder, 
depression, anxiety disorders, bipolar disorder 
and psychotic disorder are much higher than 
general population [83-89].

Seizures patients are often accompanied with 
cognitive disorders, particularly in learning 
and memory related functions, which often 
regarded as secondary to epilepsy or caused 
by epilepsy [90-94]. A small sample in 
patients with refractory temporal lobe epilepsy 
with amygdalohippocampal DBS showed 
improvement in emotional wellbeing [95]. 
Another research with nine patients with 
intractable epilepsy underwent by bilateral 
ANT- DBS suggested significant improvements 
in both verbal recall fluency tasks and oral 
information processing [30]. Application of 
LFS in kindling-induced seizure animal models 
improved cognitive impairment associated 
spontaneous alternation behavior in Y-maze test, 
concerning of the upregulation in calcineurin 
gene expression in the hippocampal area 
[96]. Further, application of LFS in kindle 
rats for a long-term could improve effect on 
spatial learning and memory, which show a 
dependence of the number of applied LFS [97]. 
In fact, dysfunction of epilepsy and cognition 
may even be bidirectional affected with each 
other, which in some extent share common 
pathological process following dysfunction 
of Papez circuit and limbic system including 
the hippocampus, which induced abnormal 
hippocampal-dependent behaviors, including 
spatial learning and memory [94,98-100]. Of 

interest, Helmstaedter and Witt highlighted the 
relevance limbic encephalitis to temporal lobe 
epilepsy with hippocampal atrophy and sclerosis 
as with successful immunomodulatory therapy, 
the seizures disappear as well as cognition and 
mood improving [94], which may provide a new 
cue to explore the mechanism and application of 
DBS. 

Conclusion

Although there has been a lot of research on 
the mechanisms of DBS in treating epilepsy, it 
is still not clear. In fact, because the organism 
is a complex system, the mechanisms of DBS 
is complex and different. In this paper, we 
distinguish the mechanism of different frequencies 
of epilepsy, but the clinical application of high-
frequency stimulation to treat epilepsy, while 
obviously the role of low frequency stimulation 
cannot be ignored. It has been reported the latest 
neuromodulator have been able to carry out high 
- low frequency conversion therapy, providing 
an important area of our individual treatment in 
clinic. We summary the mechanism of DBS for 
comorbidity of epilepsy, however unabundant, 
mainly because many diseases accompany 
epilepsy in the pathological process, they may be 
transformed into side effects during or after the 
treatment of DBS epilepsy,, such as depression. 
This suggests that we should be more delicate 
and careful in the design of clinical stimulus 
protocols, to ensure that the benefits of the 
stimulation process are maximized.
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